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An exact solution of the renormalization-group equations corresponding to the 
mean field theory of stable and metastable states is given which yields the 
correct free energies for these states. An unusual feature of this solution is that 
the renormalized Hamiltonian in the two-phase region becomes a multivalued 
function of the order parameter for all values of the length rescaling parameter 
beyond a certain critical value. This is closely related to the multivaluedness of 
the free energy as a function of magnetic field which characterizes the classical 
theory of metastable and unstable states. As a consequence of this multivalued- 
ness, the trajectory flow in the space of coupling constants exhibits unusual 
"bifurcation." This leads to difficulties in evaluating the metastable and unstable 
free energies by a trajectory integral of the spin-independent term, which can be 
resolved by an extension of the standard formalism. 

KEY WORDS: Renormalization group; mean field theory; metastable 
states; bifurcation. 

1. INTRODUCTION 

In recent years there have been several renormalization-group studies of 
mean-field or long-range force models of phase transitions. (~-3) Two of 
these were analyses of the recursion equations for stable thermodynamic 
states, with particular stress on the critical region. The first emphasized the 
existence of a so-called "van der Waals" fixed point in terms of which the 
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classical values of the critical exponents could be obtained for all dimen- 
sionality by a standard linearization of the renormalization-group equa- 
tions. This analysis involved a steepest descent evaluation of the smooth- 
cutoff renormalization equations (4'5~ for the usual Landau-Ginzburg field 
theory, in the long-range force limit in which the coefficient of the gradient 
term in the Ginzburg-Landau Hamiltonian is taken to be infinite. The 
second (2~ was a study of the closely related Kac long-range force model of 
spins on a lattice. Here an exact formal solution of the equations was 
obtained for a rather general class of renormalization transformations 
above the critical point (T > To). The emphasis in this paper was on the 
breakdown of hyperscaling relations for critical exponents. Neither paper 
dealt with the properties of the long-range force model below the critical 
point, nor, except for the special case of the zero-magnetic-field, T > Tc 
situation, with the actual evaluation of the free energy by the usual 
renormalization trajectory methods. (6~ Finally, in the third paper (3~ an 
extension of Green's procedure (t~ was used to obtain a renormalization- 
group description of the classical theory of metastability. A novel feature of 
this work was the discovery of a so-called "spinodal fixed point" associated 
with the classical spinodal curve. A linearization of the renormalization- 
group equations about this fixed point yielded the exponents which cor- 
rectly characterize the singularity in the free energy at any point on the 
spinodal curve. In addition to this fixed point, a hierarchy of multicritical 
fixed points (such as a tricritical fixed point) corresponding to the Landau 
theory of multicritical phenomena was obtained. A corresponding set of 
multicritical "spinodal" fixed points was also found. 

In this paper we complete the description of the stable and metastable 
states for the long-range force limit of the Ginzburg-Landau model by 
presenting an exact solution of the renormalization-group equations in the 
entire thermodynamic domain which yields the free energies of the stable, 
metastable, and unstable states. In particular, we find a renormalization- 
group analog of the classical theory of metastable and unstable states in the 
intensive thermodynamic representation of temperature and magnetic field. 
According to this theory, there are two branches of the Gibbs free energy 
for a fixed temperature below T~, which as a function of magnetic field 
cross each other at zero field. The analytic continuation of each of these 
branches represents each metastable state and these two branches are 
connected (at spinodal points) by the unstable branch. We find that the 
renormalized Hamiltonian (for a finite value of the length rescaling param- 
eter) exhibits a similar behavior. On the other hand, if one attempts to 
study this multivalued renormalized Hamiltonian by a standard Ginzburg- 
Landau power series expansion, one encounters quite unusual flow, as, for 
example, multiple values of the renormalized magnetic field and higher 
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order expansion coefficients. This is presumably a manifestation of the fact 
that a power series expansion is not always a useful description of these 
states in this metastable domain. 

Before outlining the structure of the paper, it is appropriate to make 
two additional remarks. The first concerns the nature of the renormaliza- 
tion group for the long-range force limit of the Ginzburg-Landau model. 
In one sense there is little physical significance associated with this renor- 
malization, since this is a case in which the Landau assumption concerning 
the analyticity of the expansion coefficients as a function of temperature 
remains valid for any value of the cutoff in wavenumber space. That is, the 
effect of fluctuations is, by definition of the model, negligible. A related 
fact is that in the steepest descent evaluation for this model, only the 
zero-wavenumber Fourier component of the order parameter (the spatially 
uniform mode) is retained, the other components being statistically negligi- 
ble in the infinite-range force limit. Thus the renormalized Hamiltonian has 
only one degree of freedom, so that in a sense only a remnant of the usual 
fluctuation effects described by the renormalization equations is present in 
our equations. On the other hand, the relative simplicity of these equations 
allows us to give an exact solution for this model, in contrast to the usual 
situation with renormalization-group problems. Thus the model is of some 
mathematical interest. Furthermore, it seems useful to understand a simple 
example of metastability in the one case where a metastable state can be 
unambiguously defined in an equilibrium description in renormalization- 
group language, before attempting to attack the much more interesting 
problem of metastability for real systems. It is perhaps appropriate to note 
here that the renormalization group provides a natural tool for the descrip- 
tion of first-order phase transitions, including metastability, in addition to 
its well-known usefulness in describing second-order phase transitions. The 
point is that in both cases the microscopic details are not crucial to 
obtaining a basic understanding of the physics of the transition. The second 
remark is that we have not yet provided a rigorous renormalization-group 
description of the mean field theory of metastability. To do this would 
presumably involve a renormalization appropriate to the constrained parti- 
tion function used by Penrose and Lebowitz (7) in their rigorous statistical 
description of the classical theory of metastability. Our point of view has 
been to follow the approach taken by Langer (8) and others in which the 
metastable state is considered to correspond to a local (but not absolute) 
minimum in the Hamiltonian in the two-phase region below the critical 
point, or, correspondingly, to the smaller of the two peaks in the Boltzmann 
probability function. 

The outline o f  this paper is the following. In Section 2 we briefly 
review the classical theory of stable and metastable states, primarily to 
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introduce notation useful in our subsequent analysis. We also summarize 
the renormalization-group equations of Ref. 3. We then effectively 
"unscale" these equations by a suitable transformation of variables, which 
yields a partial differential equation. In Section 3 we present an exact 
solution of this renormalization-group equation and examine the solution in 
three different cases: (a) the one-phase, stable region in the presence of an 
external magnetic field H; (b) the two-phase coexistence region (T < To, H 
= 0); (c) the metastable and unstable region (with T < T c, H = 0). We 
show how the exact classical free energy can be obtained for each of these 
cases from our renormalization-group solution. In Section 4 we study a 
power series solution (of the usual Ginzburg-Landau form) of the renor- 
malization-group equation in the two-phase region. We find interesting and 
unusual flow both in the case of equilibrium, two-phase coexistence, and, 
particularly, in the metastable domain. It is shown that in the latter case a 
calculation of the metastable free energy by a trajectory integral of the 
spin-independent piece involves what appears to be "unphysical" flow. 

2. BRIEF REVIEW 

We begin by noting that the classical theory of stable and metastable 
states can be obtained from an evaluation of the partition function 

z = fo(r)exp( - ~C{ o } ) (Z1) 

where o(r) is the local magnetization and ~(o) is the Landau-Ginsburg 
Hamiltonian, given by 

L 1 R:(vo) :  + �89 u2o(r) 2 
- 

1 
u 4 o ' ( r )  4 + b / l O ( r )  -{- . - .  ] (2.2) +a 

A 

where Tc is the mean field critical temperature, R 2 is the second moment of 
the interaction potential, u 1 = - H / k T ,  and u 2 = T / T ~ -  1. In the weak 
long-range force limit when R--~ oo the usual mean field theory can be 
obtained by steepest descent evaluation of (2.1). In this case, states which 
are spatially uniform are statistically favored. These states are given by the 
solution of the Euler-Lagrange equation, 

- -  a = O  

8% 8 (r) = = 0 (2.3) 

where ~(o) has the form 

~ ( 0 )  ~. U 1 + U20 "1- U403 (2.4) 
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[The function q~(x) will play a central role in our subsequent renorma- 
lization-group analysis.] Above the critical point there is one real solution 
of (2.3), with e x p [ -  ~(o)] being a singly peaked function around ~, and the 
free energy per unit volume is given by 

W(u,, u2, u4) = - ( 1 / V ) I n  Z = ~C(~)/V (2.5) 

Below the critical point, there are three real solutions of (2.3) (which define 
the spatially uniform solutions) and have the standard form 

(lu21 t ~/2 ~,=2 ~ ]  cos~, 

(lu21) 1/2 ( lu21, '/2 
a 2 = -  ~-ju 4 c o s ~ +  (2.6) \ u4 ) sinq, 

co 0 

and 

~--. 1 COS- 1 --Ul 
2u4(lu21/3u4) 3/2 

function e x p [ - ~ ( o ) ]  is a two-peaked function whose In this case the 
extrema occur at the values a i given by (2.6). For positive u I (negative H )  
and large system size, the stable state, being the absolute minimum, gives 
the dominant contribution to (2.1). On the other hand, we can calculate the 
metastable free energy by evaluating (2.1) only in the neighborhood of the 
metastable extrema. We also note that the two extrema (associated with the 
metastable and unstable states) coincide as ul moves toward its spinodal 
value. Knowing the ~'s as functions of u l, we can obtain the free energy 
density function, 

W(u~) -- ~ i ( u , ) ) / V  (2.7) 

(which is a multivalued function of u 1 for T < Tc), where 

~ ( 0 )  = UlO + 1U202 "Iv 1/,/40"4 (2.8) 

This function is shown for illustrative purposes in Fig. 1 for the values 
lu=l = 2.0 and u 4 = 0.1. 

We now turn to a discussion of the renormalization-group equations 
for this model, which are given by (3) 

 -Ta = ( -8)0   0",t)oo (29) 
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W(U,) * ] 0  

Fig. 1. 

U, 

A plot of W(u 0 with [u2[ = 2.0 and u 4 = 0.1. 

where fl is the spin rescaling parameter ,  a is a constant  which parametr izes  
the group, t is the length rescaling parameter ,  and  d is the dimensionali ty.  
(Note  that  in the usual nota t ion  2fl = 2 -  T/, where ~/ is the correlat ion 
length exponent.)  Exact  solutions for the fixed points, eigenfunctions, and  
eigenvalues of (2.9) were found earlier. (3) This fo rm of the renormalizat ion-  
group equat ion is a useful one if one wishes to discuss a scale-invariant  
theory such as characterizes a critical point.  However ,  if one wishes to 
calculate the free energy, as is our  purpose,  or obtain a solution of (2.9), it 
is more  useful to introduce t ransformat ions  which remove  the spin and  
length rescaling that  is one par t  of the usual renormal iza t ion-group opera-  
tion. Thus  we introduce new variables 

x = (2 f l / a ) ' / 2exp[  - ( d / 2  - f l ) l]  o (2.10) 

and  

t = exp(2f l / )  - 1 (2.11) 

in terms of which (2.9) becomes  

ax  ) (2.12) 

where 
^ 

~.(x, t) = e x p ( -  dl) ~C(o, l) (2.13) 

This equat ion is nothing but  the H a m i l t o n - J a c o b i  equat ion of a free 
particle with unit  mass. Finally, we note that  certain invar iance propert ies  
of %(o,  l) also hold for ~ ( x ,  t). For  example,  in the previous paper  we 
showed that  the values for the extrema ~l of the renormal ized Hami l ton ian  
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%(~, l) satisfy the equation 

d6l/dl  = ( d / 2  - B)~, (2.14) 

This effect was shown to be related to a redundant variable and was 
eliminated by a simple shift of variables. In the present case, it is even 
simpler, since it follows immediately from (2.10) that 

N( t) = (2 f l /a) l /2  exp[ - (  d / 2  - fl )l] fi (2.15) 

and hence from (2.14) and (2.15), 

d ~ ( t ) / d t  = 0 (2.16) 

That is, the extrema of ~(x, t) remain invariant. (In the mechanical analog 
this corresponds to the particle at rest with zero momentum.) Similarly, it 
can be shown that 

~ ( t ) ,  t) = ~(~(0),  0) (2.17) 

i.e., that the free energy is invariant. 
The results (2.16) and (2.17) reflect the simple fact that the renormali- 

zation does not affect thermodynamic properties. 

3. EXACT SOLUTIONS OF THE RENORMALIZATION 
GROUP EQUATIONS 

In this section we discuss the main result of this paper, namely the 
exact solution of the unscaled renormalization equation [see (2.12)] 

~ ( x , t ) _ ~ t  2 i ( ~ % ( x ' t ) )  2 0 x  

where from now on we drop the "hat" on %. The solution of Eq. (2.12) can 
be shown to be 

~ x , t )  = �89 + ~ ( x  - th(x, t) ,O) (3.1) 

where 

satisfies 

h ( x , t )  - O x,t)/Ox (3.2) 

h(x ,  t) = ~ ( x  - th(x,  t)) (3.3) 

The function ~ depends only on the initial Hamiltonian, with 

~(x )  = h(x,O) = O%(x,O)/Ox (3.4) 

The details of solving (2.12) are given in the Appendix. It is easy to show 
that (3.1) is a solution of (2.12), however, since the derivative with respect 
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to t of (3.1) yields, using (3.2) and (3.3), 

ah(x,0 
+ 

Oh + t ~ ( x -  t h ( x , t ) ) [ - h ( x , t ) -  t--~ ] 

_ 1 h2(x, t) 
2 

which is the original differential equation (2.12). In order to actually 
construct the explicit solution from (3.1) one must, of course, first solve 
(3.3) for h(x, t). The results of this are given later in this section. However, 
it is useful to first discuss the qualitative features which we find. 

To simplify the discussion we consider an initial Hamiltonian 3 

~(x,  0) = Ul(0)x 4- l u2(0)x2.4- 1 R4(0)X 4 (3.5) 

which is normally used in the mean field theory of critical phenomena. The 
coefficient u2(0 ) is positive or negative, depending on whether the tempera- 
ture is greater or less than the critical temperature. From (3.4) and (3.5) we 
have 

tp(x) = u,(O) + u2(O)x + u4(0)x 3 (3.6) 

which is shown in Fig. 2. In order to discuss the solution of (3.3) [and hence 
(3.1)] corresponding to (3.6), it is useful to make a change of variables 

y (x , t )  = x - th(x,t)  (3.7) 

3 More complicated cases, such as tricritical behavior, can be included in our general solution 
by choosing, for example, a polynomial of degree six for %(x, 0), where a tricritical point 
would correspond to both u2(0 ) and u4(0 ) vanishing. 

/i 

I 
i 

Fig. 2. A plot of if(x) with u](0 ) = 0.175, u2(0 ) = -2 .0 ,  and u4(0 ) = 0.1. 
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Fig. 3. A plot of @(y) with u2(0 ) = 2.0, u4(0 ) = 0.1, and / . /1 (0)  = 0.175. Also shown is the line 
-y/t  for t < {. 

in terms of which (3.3) becomes  

- ( y  - x ) / r  = ( 3 . 8 )  

We show the graphical  solution of (3.8) in Fig. 3 for the special case x = 0. 
No te  that  in general the renormal izat ion pa rame te r  now occurs in a very 
simple way in (3.8). F r o m  Fig. 3 it is clear that  there are two qualitatively 
different situations to consider in the solution of (3.8). In  one case there is 
only one real solution for y [and hence h (x, t)], but  in the second case there 
are three possible real solutions for y(x, t) and h(x, t). It  is the latter case 
which is unusual  insofar as no rma l  renormal iza t ion-group results are con- 
cerned, since it can yield a mul t ivalued %(x,t) through (3.1), (3.7), and 
(3.8). This requires a somewhat  careful discussion, which we give below. 
However ,  at  this stage it is useful to note  that  the mult ivaluedness  of h (x,  t) 
and  %(x ,  t) which we find originates f rom the simple fact that  we must  
solve the cubic equat ion (3.8) which involves the funct ion @(x). However ,  
this same funct ion determines the Gibbs  free energy W(u 0 through the 
identi ty 

W(Ul) = foXitp(x) dx (3.9) 

where the xi are the solutions of + ( x ) =  0 [i.e., the ex t rema of %(x,  0)]. 
Therefore  the mult ivaluedness  which we find in %(x ,  t) is int imately linked 
to the mult ivaluedness  of W(u O, as shown in Fig. 1 for T < T C. Thus  in a 
loose sense one can say that  our solution for %(x ,  t) is "s laved"  by  the 
funct ion @(x) through (3.1) and  (3.3). We  now turn to a more  quant i ta t ive 
discussion of our  results. 
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3.1. Stable One-Phase Region 

We first consider a solution of (3.3) using the substitution (3.7) in the 
one-phase region, i.e., u2(0 ) > 0, and in the presence of a magnetic field. 
That is, we consider solutions of Eq. (3.8), which reduces to 

9 + ~  7 Y+~4-~ 7 =0. (3.10) 

The coefficient of the linear term is always positive, which implies that 
there is only one real solution of this equation for all positive t. The real 
solution for h (x, t) has the form 

u o,t t 2u4 0, +otJ3 o lJ3] 
(3.10a) 

where 

D = 
[ . , (o)  - x / , ]  ~ + [u~(O) + I / t ]  ~ l '/~ 

4u42(0) 27u43(0) j 

Then, using the expression for %(x, t) given in Eq. (3.1), we can calculate 
%(x, t) and h(x, t) for any values of x and t. A plot of h(x, t) as a function 
of x for t = 2 is shown in Fig. 4a. The corresponding function %(x, t = 2) is 
shown in Fig. 4b. %(x, t) has one minimum as a function of x at 21(0 ), 
which remains fixed, i.e., 2 ( 0  = 2(0). We also have that %(2, t) = %(2, 0). 
In addition, as expected, h(x, t) has one zero as a function of x for all t. 

h(• 

+1 / 

Y 
- 3  

4-1 
[ 

x 
[ i I 

3 

Fig. 4a. A plot of h(x, t) for t = 2, Ul(0 ) = 2.0, u2(0 ) = +2.0,  and u4(0 ) = 0.1. 
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Fig. 4b. 

' _~ - \ ~  ~ • 

A plot of %(x,  t) for t = 2, u](0 ) = 2.0, u2(0 ) = +2.0,  and u4(O ) = 0.1. 

Finally we note that in the limit as t---)oo one should obtain the 
equilibrium free energy from %(x, t). That this is indeed the case can be 
seen from (3.8), which implies that, in general, 

lim t h ( x , t )  = x - xi (3.11) 

where xi are the zeros of h (x, t). In the stable one-phase region there is only 
one zero, as noted above. Thus from (3.1) and (3.11) we have 

lira ~ x , t ) =  lim �89 + lim ~ x -  th (x , t ) ,O)  
t - ~ o o  t ---> o~ t--> oo 

= ~(~ i ,  O) (3.12) 

which is the correct free energy for the stable state. 

3.2. Stable Two-Phase Coexistence 

We next consider the region below the critical point. Consider first the 
simplest case, in which u](0)= 0, so that there are two stable, coexisting 
phases, with the Gibbs free energy being the same for the two phases. In 
spite of this single-valuedness of the free energy, however, we will see that 
there is a region of t for which %(x, t) becomes multivalued. We begin with 
(3.8), which for T < T c and ul = 0 yields 

1 [1 ] x 
y3 + 7 - lu=(0)l y tUn(0) - -  0 (3.13) 

We note that for t < t * =  ]u2[ -~, there is only one real solution for y, but 
for t > t* there are three real solutions fory .  That is, for t > t*, h ( x , t )  is a 
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mult ivalued funct ion of x. These three real solutions have the form 

2 [ ' u 2 ' - l / t ]  '/2 
h(])(x,t) = - }- -3u 4 cos~b + xt 

h(2)(x't) T -3u 4 c o s * -  7 114 t 

,iu  h(3)(x,t) -7 fffu4 cosqb -1- -7 H4 -7 

(3.14) 

where 

x/t (3.15) 
j c o s - '  2Un[(lu21_ 1//Q//3u413/2 

q ,=  

where, for the remainder  of this section, we will use the notat ion ul, u2, and 
u 4 to denote  the initial values of ul(t), u2(t), and Ua(t ). 

Thus we find that  for t > t* and for certain values of x, h(x, t) is a 
mult ivalued function, as shown in Fig. 5a. The  corresponding plot of 
%(x,  t) for t > t* is shown in Fig. 5b. As can be seen, there are three 
separate  branches  of %(x,  t) in this region, similar to the situation for the 
Gibbs  free energy W(u 0 for T < To, Fig. 1. Fur thermore ,  each of these 
branches  of %(x,  t) has one (and only one) of the ext rema ~i(t) = ~i(0), so 
that  in a certain sense one could associate each of these branches  with the 
one unstable  and  two stable phases, respectively. For  t < t* there is only 
one branch  of %(x,  t), which has all three ext rema associated with it. As 
t = t*, %(x ,  t*) has a "cusp-l ike" structure. 

In  view of the mult ivalued nature  of h(x, t) and %(x, t) it is of some 

j j 

j _ _ 3  

i 

Fig. 5a. A plot of h(x, t) for t = 2, Ul(0 ) = 0, u2(0 ) = -2.0, and /14(0 ) = 0.1. 
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i 

~(x,t ) - l O  

~ .-~0 

Fig. 5b. A plot of %(x ,  t) for  t = 2, ul(0 ) = 0, u2(0 ) = - 2 . 0 ,  and  u4(0 ) = 0.1. 

mathematical  interest to note that if one uses the relation 

X t 

~(x,t) = foo h(x ,t)dx' (3.16) 

to compute %, then one is faced with a choice of contours in the 
multivalued region. For instance, if one considers Fig. 6, evaluating f~h (x', 
t)dx' at the point labeled 3 on the diagram, we can integrate along the 
contours (1-2-3), (4-3), or (5-4-3). It can be shown that no matter which 
contour one uses to evaluate %(x, t), %(x,  t) is uniquely determined at each 
point of the contour. Finally, we note that the free energies of the two 
stable and one unstable phases can be obtained from the t ~ ~ limit of 
%(x, t), using the same argument as at the end of the previous paragraph. 
The only difference is that there are now three real extrema ~ ,  so that one 
gets three free energies. 

h(x,t) 1 3 (2) 

Fig. 6. A plot  of h(x,t) for t = 2, u1 (0 )=  0, u 2 ( 0 ) = - 2 . 0 ,  and  u4(0)=  0.1, showing the 
possible  contours .  
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3.3. The Metastable and Unstable Free Energies 

We conclude our discussion of the solution of the R G  equations by 
considering the T < T c and  u] :# 0 case. This is of most  interest for our 
discussion since it includes the metas table  and  unstable  states in addit ion to 
the stable state; our  p r imary  concern is to obta in  a renormal iza t ion-group 
description of the metas table  state. The  mathemat ica l  details are very 
similar to Section 3.2. The  equat ion for y(x, t) is 

u---~ t- - ]u21 y + --u 4 ul - -7 = 0 (3.17) 

and  the solutions are of the same form as (3.14) but  with 

1 x / t -  u] 
,/,= -5 cos-' 2u4[(iUzl_ 1/t)/3u413/2 (3.18) 

Again we find that  h(x,t) and %(x,t) become  mult ivalued for t > t*, 
where 

t * =  1/lUE] (3.19) 

The  behavior  of h(x, t) and %(x ,  t) for t > t* is shown in Figs. 7a and 7b. 
As in the two-phase coexistence region, each of the branches  of %(x,  t) is 
associated with one of the three invariant  ext rema corresponding to the 
stable, metastable,  and  unstable phases. For  each branch  one also has 
%(i)(2i, t ) = %(2i,0) ,  expressing the invar iance of each of the three "free 
energies." Finally we note that  we obtain  these free energies f rom the t --) 
limit of each of these branches;  i.e., 

l im %(i)(x,t)= lim �89 lim ~x-th(i)(x, t) ,O) 
t---> oo l---~ oo I-4"O0 

= ~(~ , ,  0) (3.20) 

Fig. 7a. A plot of h(x,t) for t = 2, ul(0 ) = 1.5, U 2 ( 0  ) = --2.0, and u4(0 ) = 0.1. 
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Fig. 7b. 

j 
!)y 

A plot of %(x ,  t) for  t = 2, ul(0 ) = 1.5, u2(0 ) = - 2 . 0 ,  and  u4(0 ) = 0.1. 

In summary, it would seem that the most interesting result of our exact 
solution is that of the multivaluedness of %(x, t) for t > t* which occurs in 
the renormalization-group description for our system with more than one 
phase. In the context of this simple mean field theory, the existence of the 
three invariant extrema fig leads to an initial %(x,0) with two wells 
developing into three distinct branches, each characterized by one of the 2i. 

4. EVALUATION OF THE FREE ENERGY BY A 
TRAJECTORY INTEGRAL 

It has become standard in renormalization-group literature both to 
represent the renormalized Hamiltonian by a functional Taylor series 
expansion and to evaluate the free energy via an evaluation of the spin- 
independent piece. In view of the multivalued %(x, t) encountered in this 
mean field model (Section 3), it is not obvious that this standard procedure 
is useful in the two-phase region. In this section we examine the conse- 
quences of such an expansion and display the rather unusual trajectories 
which arise. In particular, we will show that it is possible to obtain the 
correct values for the metastable and unstable free energies by the trajec- 
tory integral formalism. However, this involves considering negative values 
of t, for which we have at present no convincing physical interpretation. 
We also find that each branch of %(x,t) has its own Taylor series 
expansion. 

We begin by seeking a power series solution for the equation 

2 
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where we write 

~ x , t )  = Uo(t ) + ~ u,( t)  x ~ (4.1) 
n= l  t/ 

Then Eq. (4.1) implies a series of coupled differential equations for the 
coupling constants, 

a U o ( O / o t  = - 

a u , ( t ) / a t  = - u,(t)u2(t),  etc. (4.2) 

Thus, if we wish to formulate a typical trajectory integral ~6) for the free 
energy we see that the Uo(t ) equation involves knowing ul(t ) only, 

Uo( t ) = - �89 fotu2( t ') dt' (4.3) 

where u l ( t ) ~  ul(O ) as t--) 0. 
If we now use the expansion (4.1) for %(x, t), then we expect that 

h ( x , t ) -  Ox = ~" un( t )xn- :  (4.4) 
n = l  

Then we get, using (4.4) and (3.3), 

u,( t) = h(O,t) = + ( - t h ( O , t ) )  = + ( - t u , ( t ) )  

Thus if we set 

y = - tul(t  ) (4.5) 

then we have that 

- y / t  = @(y) (4.6) 

Before we examine the solutions of (4.6), let us look again at the results of 
Section 3, as well as the mean field theory for %(x,  0) given in Section 2. 
First, an expression for Uo(t ) can be obtained from Eq. (3.1) with x equal 
to zero, 

Uo(t ) = �89 th2(0, t) + % ( -  th (0, t), 0) (3. l a) 

This function becomes multivalued as a function of t at [ where h (0, t) first 
becomes multivalued. Thus in using a Taylor series expansion we expect 
that for t > [ the coefficients of our expansion for %(x, t) should become 
multivalued, corresponding to separate Taylor series for each of the 
branches of %(x, t )  obtained in Section 3. Second, we found for the 
particular case where +(x) has the form [Eq. (3.6)] 

~ ( X , 0 )  = /gl(0) - - lU2(0) IX -'b Un(0)X 3 

that in the limit as t ~ ~ ,  Uo(t ) took on three values, namely %(~s,0), 
%(~,,, 0), and %(xu, 0), corresponding to the three free energies which are 
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stable, metastable, and unstable, respectively. Thus we expect to find 
similar behavior for the function (4.3) in the limit as t goes to infinity. 

Finally, it follows from (3.4) with the condition %(0, 0) = 0 [see (3.5)] 
that the free energies are given by [see (3.9)] 

o) = foo  ( x) ax 

Thus in the case where ~p(x) has the form above, i.e., Eq. (3,8), then the 
metastable state ~nvolves an integral such that 

~Y~m, O) = fo~"~/(x)dx + ~m~(x) dx (4.7) 
,xu 

Thus, with these three points in mind, let us reexamine Eq. (4.6) in the 
context of a suggestive graphical solution. Consider Fig. 3, where we exhibit 
a graphical solution of the equation 

- y / t  = l~(y) ~-- Ul(0 ) - [/,/2(0)[y --[- u4(0)y 3 (4.8) 

We can see from the diagram that initially there is one real solution, and at 
a value of t = [, say, a multivalued solution for Ul(t ) develops. These 
solutions are shown in Fig. 8a for the particular case of ul(0 ) = 0.175. On 
looking at this diagram, one first notices that although ul(t ) is multivalued 
for t > t-we see that only one solution obeys the boundary condition 
ul(t)~ ul(O ) as t ~ 0 .  We are thus faced with the dilemma as to how to 
calculate the free energies of the metastable and unstable states in the 
context of this series solution. 

In resolving this problem we first notice that in Fig. 3 there is a section 
of the curve ~p(y), i.e., for 0 < y  < ~ , ,  such that the line - y / t  does not 
intersect it for positive t. In mean field theory the unstable free energy is 

U , ( t )  

z / 
/ 

/ 

I 
- -  r 

t 
J J 

i 

\ 
Fig. 8a. A plot of the function ul(t ) for ul(0 ) = 0.175, u2(0 ) = -2 .0 ,  and u4(0 ) = 0.1. 
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U,(t) + 
~3  

/ 
t 

3 

I 

(3) 

Fig. 8b. A plot of the function ul(t ) for all values of t, where we have labeled the branches of 
the function (1), (2), (3), and (4). 

defined as 

IV, = 0C(~,, 0) = s dy (4.9) 

If we make the change of variable such that y = - tUl( t ) ,  then 

dy = - dt u , ( t )  + t - - g - i - -  

Then 

( 1 1 at(o)~t('~")u2(t)dt-L'2 u21(t) ltt((~ ) jo ~162 ( y ) dy = - 

-- 21 s t (4.10) 

But for positive t, and) ;  such that 0 < y  <Yu, there is no solution for u,(t) 
such tha ty  = - tul(t ), as can be seen from the graphical solution in Fig. 3. 

Thus to resolve the problem of the unstable free energy and also the 
interpretation of the two solutions of Ul(t ) in Fig. 8a which do not approach 
ul(0 ) as t--~0, we again consider Fig. 3. We see that if we search for a 
solution for negative t, namely a solution of the equation 

y/ l t l  = q~(y) (4.11) 

then there does indeed exist a solution for which t = - tul(t ) for 0 < y < Yu 
and which goes over to ul(0 ) in the limit as t ~ 0. Therefore, if we were now 
to draw in all the solutions of interest to us for Ul(t ), we get the diagram in 
Fig. 8b, where we have labeled the branches as shown. Thus 

1 P - - ~  2 Wu = - ~ [ ul(t ) dt (4.12) 
JO 
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along branch 4, where we have used the result (4.11). Similarly 

l fo~U~(t)dtJ@ (4.13) 

This can be seen by considering the graphical solution of Fig. 3. Similarly 
we can show that 

(4.14) 

where again we have used the graphical solution to choose the correct 
trajectory. We notice that for each of these trajectories, ul( t )-~ul(O ) as 
t ~ 0, as it must. It can be shown that these interpretations are consistent 
with the solutions for Uo(t ) already obtained in Section 3. 

Thus to conclude this section we find that to calculate a free energy 
associated with a metastable state using a trajectory integral of the function 
ul(t), one has to find solutions of Eq. (4.2), 

a o/at = - 

such that ul(t)---~ ul(O ) as t goes to zero. Therefore in the case of the 
metastable and, in particular, the unstable state this involves finding a 
solution of ul(t ) for negative t. 

It should be clear from the above discussion that a single power series 
expansion is not an appropriate representation for a function such as 
%(x,  t) which is multivalued in the two-phase region. In particular, the 
computation of the metastable free energy involves two separate branches 
of %(x,  t), each of which is represented by its own power series expansion. 
In order to obtain the expansion coefficients, however, we have had to 
consider negative t. 

APPENDIX 

A general solution of the equation [Eq. (2.12)] 

O~(x,  Q / a t  = - � 89  2 

is of the form 

36 = a ( x , t ) x  - �89 + q~(a(x,t)) (A1) 

where g, is some arbitrary function of the constant of integration a. The 
quantity a(x,  t) is obtained by solving the equation 

r = a(x ,  t)t - x (a2)  
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Thus if we define the function h(x, t) by 

h(x, t) = O~(x, t ) /~x  (A3) 

then (AI) and (A3) imply that 

~% 3a(x, t) 
h(x , t )  = a(x, t )  + 8~ a ~  - a(x , t )  

Therefore we see from this result and (A2) that h (x, t) is the solution of the 
equation 

x = th(x, t) - ep'(h(x, t)) (An) 

Further, for t = 0 we have 

h(x,O) = ~(x,O) = O~x ,O) /Ox  (A5) 

and 

x = h(x,O) - ~'(h(x,O)) ----f-'(h) (a6) 

where +(x) is a single-valued function which depends only on the initial 
Hamiltonian. We therefore see from (A5) and (A6) that f = 4. It immedi- 
ately follows from (A6) and (A4) that 

t~-l(h) = h - qS'(h) = - ht + x 

i.e., 

h(x, t) = qJ(x - th(x, t)) (A7) 

Equation (A3) implies 
X t 

~(x , t )  = uo(t ) + foo h(x , t )dx'  (A8) 

If we multiply both sides of (A7) by 

[ 1 - t 3 h ( x , t ) / O x  1 

and integrate over x, we have that 

x , Oh(x',t) 
fO xh(x' ' t)  dx' - foo h(x ,t)t  3 ~  dx' 

~h = fooX~(x ' -  t h ( x ' , t ) ) ( 1 - t - ~ x  )dX' 

Therefore we get that 
X ! x 

fo h ( x ' t ) d x ' = � 8 9  th(x't) 'O)]l~ (A9) 

Therefore (A8) implies that 

(~(x,t)----uo(t) + l t [h2(x , t ) ] l~+[~C(x-  ,h(x,t),O)]lXo (A10) 
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This implies that 

and hence 

Uo(t) =  th2(o, t) + th(o, O, o) 

~ ( X , t )  = �89 + ~ x  - th (x , t ) ,O)  

(A11) 

(A12) 
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